Termination of the given ITRSProblem could not be shown:



ITRS
  ↳ ITRStoIDPProof

ITRS problem:
The following domains are used:

z

The TRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(x, -@z(y, 1@z), +@z(z, y))
Cond_eval(TRUE, x, y, z) → eval(-@z(x, 1@z), -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z)

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)


Added dependency pairs

↳ ITRS
  ↳ ITRStoIDPProof
IDP
      ↳ UsableRulesProof

I DP problem:
The following domains are used:

z

The ITRS R consists of the following rules:

eval(x, y, z) → Cond_eval1(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z)
Cond_eval1(TRUE, x, y, z) → eval(x, -@z(y, 1@z), +@z(z, y))
Cond_eval(TRUE, x, y, z) → eval(-@z(x, 1@z), -@z(y, 1@z), z)
eval(x, y, z) → Cond_eval(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z)

The integer pair graph contains the following rules and edges:

(0): EVAL(x[0], y[0], z[0]) → COND_EVAL1(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])
(1): COND_EVAL1(TRUE, x[1], y[1], z[1]) → EVAL(x[1], -@z(y[1], 1@z), +@z(z[1], y[1]))
(2): EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>=@z(x[2], 0@z), >=@z(*@z(*@z(z[2], z[2]), z[2]), y[2])), x[2], y[2], z[2])
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), -@z(y[3], 1@z), z[3])

(0) -> (1), if ((z[0]* z[1])∧(x[0]* x[1])∧(y[0]* y[1])∧(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])) →* TRUE))


(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(+@z(z[1], y[1]) →* z[0])∧(x[1]* x[0]))


(1) -> (2), if ((-@z(y[1], 1@z) →* y[2])∧(+@z(z[1], y[1]) →* z[2])∧(x[1]* x[2]))


(2) -> (3), if ((z[2]* z[3])∧(x[2]* x[3])∧(y[2]* y[3])∧(&&(>=@z(x[2], 0@z), >=@z(*@z(*@z(z[2], z[2]), z[2]), y[2])) →* TRUE))


(3) -> (0), if ((-@z(y[3], 1@z) →* y[0])∧(z[3]* z[0])∧(-@z(x[3], 1@z) →* x[0]))


(3) -> (2), if ((-@z(y[3], 1@z) →* y[2])∧(z[3]* z[2])∧(-@z(x[3], 1@z) →* x[2]))



The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)


As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
IDP
          ↳ IDPNonInfProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): EVAL(x[0], y[0], z[0]) → COND_EVAL1(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])
(1): COND_EVAL1(TRUE, x[1], y[1], z[1]) → EVAL(x[1], -@z(y[1], 1@z), +@z(z[1], y[1]))
(2): EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>=@z(x[2], 0@z), >=@z(*@z(*@z(z[2], z[2]), z[2]), y[2])), x[2], y[2], z[2])
(3): COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), -@z(y[3], 1@z), z[3])

(0) -> (1), if ((z[0]* z[1])∧(x[0]* x[1])∧(y[0]* y[1])∧(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])) →* TRUE))


(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(+@z(z[1], y[1]) →* z[0])∧(x[1]* x[0]))


(1) -> (2), if ((-@z(y[1], 1@z) →* y[2])∧(+@z(z[1], y[1]) →* z[2])∧(x[1]* x[2]))


(2) -> (3), if ((z[2]* z[3])∧(x[2]* x[3])∧(y[2]* y[3])∧(&&(>=@z(x[2], 0@z), >=@z(*@z(*@z(z[2], z[2]), z[2]), y[2])) →* TRUE))


(3) -> (0), if ((-@z(y[3], 1@z) →* y[0])∧(z[3]* z[0])∧(-@z(x[3], 1@z) →* x[0]))


(3) -> (2), if ((-@z(y[3], 1@z) →* y[2])∧(z[3]* z[2])∧(-@z(x[3], 1@z) →* x[2]))



The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)


The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair EVAL(x, y, z) → COND_EVAL1(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z) the following chains were created:




For Pair COND_EVAL1(TRUE, x, y, z) → EVAL(x, -@z(y, 1@z), +@z(z, y)) the following chains were created:




For Pair EVAL(x, y, z) → COND_EVAL(&&(>=@z(x, 0@z), >=@z(*@z(*@z(z, z), z), y)), x, y, z) the following chains were created:




For Pair COND_EVAL(TRUE, x, y, z) → EVAL(-@z(x, 1@z), -@z(y, 1@z), z) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(-@z(x1, x2)) = x1 + (-1)x2   
POL(0@z) = 0   
POL(*@z(x1, x2)) = x1·x2   
POL(TRUE) = 0   
POL(&&(x1, x2)) = 0   
POL(EVAL(x1, x2, x3)) = -1 + x1   
POL(FALSE) = 2   
POL(>=@z(x1, x2)) = -1   
POL(COND_EVAL1(x1, x2, x3, x4)) = -1 + x2 + (-1)x1   
POL(+@z(x1, x2)) = x1 + x2   
POL(COND_EVAL(x1, x2, x3, x4)) = -1 + x2 + (-1)x1   
POL(1@z) = 1   
POL(undefined) = -1   

The following pairs are in P>:

COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), -@z(y[3], 1@z), z[3])

The following pairs are in Pbound:

COND_EVAL(TRUE, x[3], y[3], z[3]) → EVAL(-@z(x[3], 1@z), -@z(y[3], 1@z), z[3])

The following pairs are in P:

EVAL(x[0], y[0], z[0]) → COND_EVAL1(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])
COND_EVAL1(TRUE, x[1], y[1], z[1]) → EVAL(x[1], -@z(y[1], 1@z), +@z(z[1], y[1]))
EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>=@z(x[2], 0@z), >=@z(*@z(*@z(z[2], z[2]), z[2]), y[2])), x[2], y[2], z[2])

At least the following rules have been oriented under context sensitive arithmetic replacement:

FALSE1&&(FALSE, FALSE)1
-@z1
TRUE1&&(TRUE, TRUE)1
+@z1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
IDP
              ↳ IDependencyGraphProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(0): EVAL(x[0], y[0], z[0]) → COND_EVAL1(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])
(1): COND_EVAL1(TRUE, x[1], y[1], z[1]) → EVAL(x[1], -@z(y[1], 1@z), +@z(z[1], y[1]))
(2): EVAL(x[2], y[2], z[2]) → COND_EVAL(&&(>=@z(x[2], 0@z), >=@z(*@z(*@z(z[2], z[2]), z[2]), y[2])), x[2], y[2], z[2])

(1) -> (2), if ((-@z(y[1], 1@z) →* y[2])∧(+@z(z[1], y[1]) →* z[2])∧(x[1]* x[2]))


(0) -> (1), if ((z[0]* z[1])∧(x[0]* x[1])∧(y[0]* y[1])∧(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])) →* TRUE))


(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(+@z(z[1], y[1]) →* z[0])∧(x[1]* x[0]))



The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)


The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
IDP
                  ↳ IDPtoQDPProof

I DP problem:
The following domains are used:

z

R is empty.
The integer pair graph contains the following rules and edges:

(1): COND_EVAL1(TRUE, x[1], y[1], z[1]) → EVAL(x[1], -@z(y[1], 1@z), +@z(z[1], y[1]))
(0): EVAL(x[0], y[0], z[0]) → COND_EVAL1(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])

(0) -> (1), if ((z[0]* z[1])∧(x[0]* x[1])∧(y[0]* y[1])∧(&&(>=@z(x[0], 0@z), >=@z(*@z(*@z(z[0], z[0]), z[0]), y[0])) →* TRUE))


(1) -> (0), if ((-@z(y[1], 1@z) →* y[0])∧(+@z(z[1], y[1]) →* z[0])∧(x[1]* x[0]))



The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(TRUE, x0, x1, x2)
Cond_eval(TRUE, x0, x1, x2)


Represented integers and predefined function symbols by Terms

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
QDP
                      ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
EVAL(x[0], y[0], z[0]) → COND_EVAL1(and(greatereq_int(x[0], pos(0)), greatereq_int(mult_int(mult_int(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])

The TRS R consists of the following rules:

minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), neg(y)) → minus_nat(y, x)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
minus_int(pos(x), neg(y)) → pos(plus_nat(x, y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
QDP
                          ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
EVAL(x[0], y[0], z[0]) → COND_EVAL1(and(greatereq_int(x[0], pos(0)), greatereq_int(mult_int(mult_int(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)
minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

eval(x0, x1, x2)
Cond_eval1(true, x0, x1, x2)
Cond_eval(true, x0, x1, x2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
EVAL(x[0], y[0], z[0]) → COND_EVAL1(and(greatereq_int(x[0], pos(0)), greatereq_int(mult_int(mult_int(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0])

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
QDP
                              ↳ RemovalProof
                              ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1], x_removed) → EVAL(x[1], minus_int(y[1], x_removed), plus_int(z[1], y[1]), x_removed)
EVAL(x[0], y[0], z[0], x_removed) → COND_EVAL1(and(greatereq_int(x[0], pos(0)), greatereq_int(mult_int(mult_int(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0], x_removed)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
QDP
                              ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1], x_removed) → EVAL(x[1], minus_int(y[1], x_removed), plus_int(z[1], y[1]), x_removed)
EVAL(x[0], y[0], z[0], x_removed) → COND_EVAL1(and(greatereq_int(x[0], pos(0)), greatereq_int(mult_int(mult_int(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0], x_removed)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [LPAR04] the rule EVAL(x[0], y[0], z[0]) → COND_EVAL1(and(greatereq_int(x[0], pos(0)), greatereq_int(mult_int(mult_int(z[0], z[0]), z[0]), y[0])), x[0], y[0], z[0]) at position [0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing
QDP
                                  ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), neg(x0)), y1)), y0, y1, neg(x0)) at position [0,1,0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Rewriting
QDP
                                      ↳ Rewriting

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [LPAR04] the rule EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(mult_int(pos(mult_nat(x0, x0)), pos(x0)), y1)), y0, y1, pos(x0)) at position [0,1,0] we obtained the following new rules [LPAR04]:

EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
QDP
                                          ↳ Instantiation

Q DP problem:
The TRS P consists of the following rules:

COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1]))
EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [LPAR04] the rule COND_EVAL1(true, x[1], y[1], z[1]) → EVAL(x[1], minus_int(y[1], pos(s(0))), plus_int(z[1], y[1])) we obtained the following new rules [LPAR04]:

COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ Instantiation
QDP
                                              ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


EVAL(neg(s(x0)), y1, y2) → COND_EVAL1(and(false, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(s(x0)), y1, y2)
The remaining pairs can at least be oriented weakly.

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(COND_EVAL1(x1, x2, x3, x4)) = x1   
POL(EVAL(x1, x2, x3)) = 1   
POL(and(x1, x2)) = x1   
POL(false) = 0   
POL(greatereq_int(x1, x2)) = x2   
POL(minus_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(mult_int(x1, x2)) = 0   
POL(mult_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(plus_int(x1, x2)) = 0   
POL(plus_nat(x1, x2)) = 0   
POL(pos(x1)) = 1   
POL(s(x1)) = 0   
POL(true) = 1   

The following usable rules [FROCOS05] were oriented:

greatereq_int(neg(s(x)), pos(0)) → false
greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
and(true, true) → true
and(true, false) → false
and(false, true) → false
and(false, false) → false



↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ Instantiation
                                            ↳ QDP
                                              ↳ QDPOrderProof
QDP
                                                  ↳ RemovalProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2)
EVAL(pos(x0), y1, y2) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2)
EVAL(y0, y1, neg(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0))
EVAL(y0, y1, pos(x0)) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0))
COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
In the following pairs the term without variables pos(s(0)) is replaced by the fresh variable x_removed.
Pair: COND_EVAL1(true, z0, z1, pos(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(pos(z2), z1))
Positions in right side of the pair: Pair: COND_EVAL1(true, z0, z1, neg(z2)) → EVAL(z0, minus_int(z1, pos(s(0))), plus_int(neg(z2), z1))
Positions in right side of the pair: Pair: COND_EVAL1(true, neg(0), z0, z1) → EVAL(neg(0), minus_int(z0, pos(s(0))), plus_int(z1, z0))
Positions in right side of the pair: Pair: COND_EVAL1(true, pos(z0), z1, z2) → EVAL(pos(z0), minus_int(z1, pos(s(0))), plus_int(z2, z1))
Positions in right side of the pair: Pair: COND_EVAL1(true, neg(s(z0)), z1, z2) → EVAL(neg(s(z0)), minus_int(z1, pos(s(0))), plus_int(z2, z1))
Positions in right side of the pair: The new variable was added to all pairs as a new argument[CONREM].

↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ Instantiation
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ RemovalProof
QDP
                                                      ↳ NonInfProof

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2, x_removed)
COND_EVAL1(true, z0, z1, pos(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(pos(z2), z1), x_removed)
COND_EVAL1(true, z0, z1, neg(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(neg(z2), z1), x_removed)
COND_EVAL1(true, neg(0), z0, z1, x_removed) → EVAL(neg(0), minus_int(z0, x_removed), plus_int(z1, z0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL1(true, pos(z0), z1, z2, x_removed) → EVAL(pos(z0), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair EVAL(neg(0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2, x_removed) the following chains were created:




For Pair COND_EVAL1(true, z0, z1, pos(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(pos(z2), z1), x_removed) the following chains were created:




For Pair COND_EVAL1(true, z0, z1, neg(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(neg(z2), z1), x_removed) the following chains were created:




For Pair COND_EVAL1(true, neg(0), z0, z1, x_removed) → EVAL(neg(0), minus_int(z0, x_removed), plus_int(z1, z0), x_removed) the following chains were created:




For Pair EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed) the following chains were created:




For Pair COND_EVAL1(true, pos(z0), z1, z2, x_removed) → EVAL(pos(z0), minus_int(z1, x_removed), plus_int(z2, z1), x_removed) the following chains were created:




For Pair EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed) the following chains were created:




For Pair COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed) the following chains were created:




For Pair EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed) the following chains were created:




To summarize, we get the following constraints P for the following pairs.



The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation [NONINF]:

POL(0) = 1   
POL(COND_EVAL1(x1, x2, x3, x4, x5)) = -1 - x1 - x2 - x3 - x4 - x5   
POL(EVAL(x1, x2, x3, x4)) = -1 + x1 - x2 - x3 - x4   
POL(and(x1, x2)) = 0   
POL(c) = -1   
POL(false) = 1   
POL(greatereq_int(x1, x2)) = 0   
POL(minus_int(x1, x2)) = 0   
POL(minus_nat(x1, x2)) = 0   
POL(mult_int(x1, x2)) = 0   
POL(mult_nat(x1, x2)) = 0   
POL(neg(x1)) = 0   
POL(plus_int(x1, x2)) = x1   
POL(plus_nat(x1, x2)) = 1 + x1 + x2   
POL(pos(x1)) = 0   
POL(s(x1)) = 0   
POL(true) = 0   

The following pairs are in P>:

COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
The following pairs are in Pbound:

COND_EVAL1(true, neg(s(z0)), z1, z2, x_removed) → EVAL(neg(s(z0)), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
The following rules are usable:

pos(0) → minus_nat(0, 0)
pos(plus_nat(x, y)) → plus_int(pos(x), pos(y))
neg(plus_nat(x, y)) → plus_int(neg(x), neg(y))
minus_nat(y, x) → plus_int(neg(x), pos(y))
minus_nat(x, y) → plus_int(pos(x), neg(y))
neg(plus_nat(x, y)) → minus_int(neg(x), pos(y))
minus_nat(x, y) → minus_int(pos(x), pos(y))
trueand(true, true)
falseand(true, false)
falseand(false, true)
falseand(false, false)
minus_nat(x, y) → minus_nat(s(x), s(y))
neg(s(y)) → minus_nat(0, s(y))
pos(s(x)) → minus_nat(s(x), 0)


↳ ITRS
  ↳ ITRStoIDPProof
    ↳ IDP
      ↳ UsableRulesProof
        ↳ IDP
          ↳ IDPNonInfProof
            ↳ IDP
              ↳ IDependencyGraphProof
                ↳ IDP
                  ↳ IDPtoQDPProof
                    ↳ QDP
                      ↳ UsableRulesProof
                        ↳ QDP
                          ↳ QReductionProof
                            ↳ QDP
                              ↳ RemovalProof
                              ↳ RemovalProof
                              ↳ Narrowing
                                ↳ QDP
                                  ↳ Rewriting
                                    ↳ QDP
                                      ↳ Rewriting
                                        ↳ QDP
                                          ↳ Instantiation
                                            ↳ QDP
                                              ↳ QDPOrderProof
                                                ↳ QDP
                                                  ↳ RemovalProof
                                                    ↳ QDP
                                                      ↳ NonInfProof
QDP

Q DP problem:
The TRS P consists of the following rules:

EVAL(neg(0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), neg(0), y1, y2, x_removed)
COND_EVAL1(true, z0, z1, pos(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(pos(z2), z1), x_removed)
COND_EVAL1(true, z0, z1, neg(z2), x_removed) → EVAL(z0, minus_int(z1, x_removed), plus_int(neg(z2), z1), x_removed)
COND_EVAL1(true, neg(0), z0, z1, x_removed) → EVAL(neg(0), minus_int(z0, x_removed), plus_int(z1, z0), x_removed)
EVAL(pos(x0), y1, y2, x_removed) → COND_EVAL1(and(true, greatereq_int(mult_int(mult_int(y2, y2), y2), y1)), pos(x0), y1, y2, x_removed)
COND_EVAL1(true, pos(z0), z1, z2, x_removed) → EVAL(pos(z0), minus_int(z1, x_removed), plus_int(z2, z1), x_removed)
EVAL(y0, y1, neg(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(neg(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, neg(x0), x_removed)
EVAL(y0, y1, pos(x0), x_removed) → COND_EVAL1(and(greatereq_int(y0, pos(0)), greatereq_int(pos(mult_nat(mult_nat(x0, x0), x0)), y1)), y0, y1, pos(x0), x_removed)

The TRS R consists of the following rules:

greatereq_int(pos(x), pos(0)) → true
greatereq_int(neg(0), pos(0)) → true
greatereq_int(neg(s(x)), pos(0)) → false
mult_int(pos(x), pos(y)) → pos(mult_nat(x, y))
mult_int(neg(x), neg(y)) → pos(mult_nat(x, y))
mult_int(pos(x), neg(y)) → neg(mult_nat(x, y))
mult_int(neg(x), pos(y)) → neg(mult_nat(x, y))
greatereq_int(neg(0), neg(y)) → true
greatereq_int(pos(x), neg(y)) → true
greatereq_int(pos(0), pos(s(y))) → false
greatereq_int(neg(x), pos(s(y))) → false
greatereq_int(neg(s(x)), neg(0)) → false
greatereq_int(pos(s(x)), pos(s(y))) → greatereq_int(pos(x), pos(y))
greatereq_int(neg(s(x)), neg(s(y))) → greatereq_int(neg(x), neg(y))
and(false, false) → false
and(false, true) → false
and(true, false) → false
and(true, true) → true
mult_nat(0, y) → 0
mult_nat(s(x), 0) → 0
mult_nat(s(x), s(y)) → plus_nat(mult_nat(x, s(y)), s(y))
plus_nat(0, x) → x
plus_nat(s(x), y) → s(plus_nat(x, y))
minus_int(pos(x), pos(y)) → minus_nat(x, y)
minus_int(neg(x), pos(y)) → neg(plus_nat(x, y))
plus_int(pos(x), neg(y)) → minus_nat(x, y)
plus_int(neg(x), pos(y)) → minus_nat(y, x)
plus_int(neg(x), neg(y)) → neg(plus_nat(x, y))
plus_int(pos(x), pos(y)) → pos(plus_nat(x, y))
minus_nat(0, 0) → pos(0)
minus_nat(0, s(y)) → neg(s(y))
minus_nat(s(x), 0) → pos(s(x))
minus_nat(s(x), s(y)) → minus_nat(x, y)

The set Q consists of the following terms:

minus_int(pos(x0), pos(x1))
minus_int(neg(x0), neg(x1))
minus_int(neg(x0), pos(x1))
minus_int(pos(x0), neg(x1))
plus_nat(0, x0)
plus_nat(s(x0), x1)
minus_nat(0, 0)
minus_nat(0, s(x0))
minus_nat(s(x0), 0)
minus_nat(s(x0), s(x1))
plus_int(pos(x0), neg(x1))
plus_int(neg(x0), pos(x1))
plus_int(neg(x0), neg(x1))
plus_int(pos(x0), pos(x1))
and(false, false)
and(false, true)
and(true, false)
and(true, true)
greatereq_int(pos(x0), pos(0))
greatereq_int(neg(0), pos(0))
greatereq_int(neg(0), neg(x0))
greatereq_int(pos(x0), neg(x1))
greatereq_int(pos(0), pos(s(x0)))
greatereq_int(neg(x0), pos(s(x1)))
greatereq_int(neg(s(x0)), pos(0))
greatereq_int(neg(s(x0)), neg(0))
greatereq_int(pos(s(x0)), pos(s(x1)))
greatereq_int(neg(s(x0)), neg(s(x1)))
mult_int(pos(x0), pos(x1))
mult_int(pos(x0), neg(x1))
mult_int(neg(x0), pos(x1))
mult_int(neg(x0), neg(x1))
mult_nat(0, x0)
mult_nat(s(x0), 0)
mult_nat(s(x0), s(x1))

We have to consider all minimal (P,Q,R)-chains.